Astronomi Bilim adamları (kim kimdir)

Ali Kuşçu ( .... - 1474) document.title="Ali Kuşçu ( .... - 1474) - Kim Kimdir? - FORSNET";

Ali Kuşçu   ( ....  - 1474)

Onbeşinci yüzyılda yaşamış olan önemli bir astronomi ve matematik bilginidir. Babası Timur'un (1369-1405) torunu olan Uluğ Bey'in doğancıbaşısı idi. "Kuşçu" lâkabı buradan gelmektedir.

Ali Kuşçu, Semerkand'da doğmuş ve burada yetişmiştir. Burada bulunduğu sıralarda, Uluğ Bey de dahil olmak üzere, Kadızâde-i Rûmî (1337-1420) ve Gıyâsüddin Cemşid el-Kâşî (?-1429) gibi dönemin önemli bilim adamlarından matematik ve astronomi dersleri almıştır. Ali Kuşçu bir aralık, öğrenimini tamamlamak amacı ile, Uluğ Bey'den habersiz Kirman'a gitmiş ve orada yazdığı Hall el-Eşkâl el-Kamer adlı risalesi ile geri dönmüştür. Dönüşünde risaleyi Uluğ Bey'e armağan etmiş ve Ali Kuşçu'nun kendisinden izin almadan Kirman'a gitmesine kızan Uluğ Bey, risaleyi okuduktan sonra onu takdir etmiştir.

Ali Kuşçu, Semerkand'a dönüşünden sonra, Semerkand Gözlemevi'nin müdürü olan Kadızâde-i Rûmî'nin ölümü üzerine gözlemevinin başına geçmiş ve Uluğ Bey Zîci'nin tamamlanmasına yardımcı olmuştur. Ancak, Uluğ Bey'in ölümü üzerine Ali Kuşçu Semerkand'dan ayrılmış ve Akkoyunlu hükümdarı Uzun Hasan'ın yanına gitmiştir. Daha sonra Uzun Hasan tarafından, Osmanlılar ile Akkoyunlular arasında barışı sağlamak amacı ile Fatih'e elçi olarak gönderilmiştir.

Bir kültür merkezi oluşturmanın şartlarından birinin de bilim adamlarını biraraya toplamak olduğunu bilen Fatih, Ali Kuşçu'ya İstanbul'da kalmasını ve medresede ders vermesini teklif eder. Ali Kuşçu, bunun üzerine, Tebriz'e dönerek elçilik görevini tamamlar ve tekrar İstanbul'a geri döner. İstanbul'a dönüşünde Ali Kuşçu, Fatih tarafından görevlendirilen bir heyet tarafından sınırda karşılanır. Kendisi için ayrıca karşılama töreni yapılır. Ali Kuşçu'yu karşılayanlar arasında, zamanın ulemâsı İstanbul kadısı Hocazâde Müslihü'd-Din Mustafa ve diğer bilim adamları da vardır. İstanbul'a gelen Ali Kuşçu'ya 200 altın maaş bağlanır ve Ayasofya'ya müderris olarak atanır. Ali Kuşçu, burada Fatih Külliyesi'nin programlarını hazırlamış, astronomi ve matematik dersleri vermiştir. Ayrıca İstanbul'un enlem ve boylamını ölçmüş ve çeşitli Güneş saatleri de yapmıştır. Ali Kuşçu'nun medreselerde matematik derslerinin okutulmasında önemli rolü olmuştur. Verdiği dersler olağanüstü rağbet görmüş ve önemli bilim adamları tarafında da izlenmiştir. Ayrıca dönemin matematikçilerinden Sinan Paşa da öğrencilerinden Molla Lütfi aracılığı ile Ali Kuşçu'nun derslerini takip etmiştir. Nitekim etkisi onaltıncı yüzyılda ürünlerini verecektir.

Ali Kuşçu'nun astronomi ve matematik alanında yazmış olduğu iki önemli eseri vardır. Bunlardan birisi, Otlukbeli Savaşı sırasında bitirilip zaferden sonra Fatih'e sunulduğu için Fethiye adı verilen astronomi kitabıdır. Eser üç bölümden oluşmaktadır. Birinci bölümde gezegenlerin küreleri ele alınmakta ve gezegenlerin hareketlerinden bahsedilmektedir. İkinci bölüm Yer'in şekli ve yedi iklim üzerinedir. Son bölümde ise Ali Kuşçu, Yer'e ilişkin ölçüleri ve gezegenlerin uzaklıklarını vermektedir. Döneminde hayli etkin olmuş olan bu astronomi eseri küçük bir elkitabı niteliğindedir ve yeni bulgular ortaya koymaktan çok, medreselerde astronomi öğretimi için yazılmıştır. Ali Kuşçu'nun diğer önemli eseri ise, Fatih'in adına atfen Muhammediye adını verdiği matematik kitabıdır.


 

İbn Sina (980 - 1037) document.title="İbn Sina (980 - 1037) - Kim Kimdir? - FORSNET";

İbn Sina   (980 - 1037)

Felsefe, matematik, astronomi, fizik, kimya, tıp ve müzik gibi bilgi ve becerinin muhtelif alanlarında seçkinleşmiş olan, İbn Sînâ (980-1037) matematik alanında matematiksel terimlerin tanımları ve astronomi alanında ise duyarlı gözlemlerin yapılması konularıyla ilgilenmiştir. Astroloji ve simyaya itibar etmemiş, Dönüşüm Kuraminın doğru olup olmadığını yapmış olduğu deneylerle araştırmış ve doğru olmadığı sonucuna ulaşmıştır. İbn Sînâ'ya göre, her element sadece kendisine özgü niteliklere sahiptir ve dolayısıyla daha değersiz metallerden altın ve gümüş gibi daha değerli metallerin elde edilmesi mümkün değildir.

İbn Sînâ, mekanikle de ilgilenmiş ve bazı yönlerden Aristoteles'in hareket anlayışını eleştirmiştir; bilindiği gibi, Aristoteles, cismi hareket ettiren kuvvet ile cisim arasındaki temas ortadan kalktığında, cismin hareketini sürdürmesini sağlayan etmenin ortam, yani hava olduğunu söylüyor ve havaya biri cisme direnme ve diğeri cismi taşıma olmak üzere birbiriyle bağdaşmayacak iki görev yüklüyordu. İbn Sînâ bu çelişik durumu görmüş, yapmış olduğu gözlemler sırasında hava ile rüzgârın güçlerini karşılaştırmış ve Aristoteles'in haklı olabilmesi için havanın şiddetinin rüzgârın şiddetinden daha fazla olması gerektiği sonucuna varmıştır; oysa meselâ bir bir ağacın yakınından geçen bir ok, ağaca değmediği sürece, ağaçta ve yapraklarında en ufak bir kıpırdanma yaratmazken, rüzgar ağaçları sallamakta ve hatta kökünden kopartabilmektedir; öyleyse havanın şiddeti cisimleri taşımaya yeterli değildir.

İbn Sînâ'ya Aristoteles'in yanıldığını gösterdikten sonra, kuvvetle cisim arasında herhangi bir temas bulunmadığında hareketin kesintiye uğramamasının nedenini araştırmış ve bir nesneye kuvvet uygulandıktan sonra, kuvvetin etkisi ortadan kalksa bile nesnenin hareketini sürdürmesinin nedeninin, kasri meyil (güdümlenmiş eğim), yani nesneye kazandırılan hareket etme isteği olduğunu sonucuna varmıştır. Üstelik İbn Sînâ bu isteğin sürekli olduğuna inanmaktadır; yani ona göre, ister öze âit olsun ister olmasın, bir defa kazanıldı mı artık kaybolmaz. Bu yaklaşımıyla sonradan Newton'da son biçimine kavuşan eylemsizlik ilkesi'ne yaklaştığı anlaşılan İbn Sînâ, aynı zamanda nesnenin özelliğine göre kazandığı güdümlenmiş eğimin de değişik olacağını belirtmiştir. Meselâ elimize bir taş, bir demir ve bir mantar parçası alsak ve bunları aynı kuvvetle fırlatsak, her biri farklı uzaklıklara düşecek, ağır cismimler hafif cisimlere nispetle kuvvet kaynağından çok daha uzaklaşacaktır.

İbn Sînâ'nın bu çalışması oldukça önemlidir; çünkü 11. yüzyılda yaşayan bir kimse olmasına karşın, Yeniçağ Mekaniği'ne yaklaştığı görülmektedir. Onun bu düşünceleri, çeviriler yoluyla Batı'ya da geçmiş ve güdümlenmiş eğim terimi Batı'da impetus terimiyle karşılanmıştır.

İbn Sînâ, her şeyden önce bir hekimdir ve bu alandaki çalışmalarıyla tanınmıştır. Tıpla ilgili birçok eser kaleme almıştır; bunlar arasında özellikle kalp-damar sistemi ile ilgili olanlar dikkat çekmektedir, ancak, İbn Sînâ dendiğinde, onun adıyla özdeşleşmiş ve Batı ülkelerinde 16. yüzyılın ve Doğu ülkelerinde ise 19. yüzyılın başlarına kadar okunmuş ve kullanılmış olan el-Kânûn fî't-Tıb (Tıp Kanunu) adlı eseri akla gelir. Beş kitaptan oluşan bu ansiklopedik eserin Birinci Kitab'ı, anatomi ve koruyucu hekimlik, İkinci Kitab'ı basit ilaçlar, Üçüncü Kitab'ı patoloji, Dördüncü Kitab'ı ilaçlarla ve cerrâhî yöntemlerle tedavi ve Beşinci Kitab'ı ise çeşitli ilaç terkipleriyle ilgili ayrıntılı bilgiler vermektedir.

İslam tarihinde önemli adımların atıldığı bir dönemde bilim hususunda daha sonra gelişecek olan Avrupa biliminde de önemli etkileri olacak olan İbn Sina, geliştirdiği felsefeyle de daha sonraları bir çok İslam alimi tarafından da eleştirilmiştir.


Batlamyus ( .... - .... ) document.title="Batlamyus ( .... - .... ) - Kim Kimdir? - FORSNET";

Batlamyus   ( ....  -  .... )

Geç İskenderiye Dönemi'nde yaşamış (M.S. ikinci yüzyılın birinci yarısı) ünlü bilim adamlarından birisi de Batlamyus'tur. Hayatı hakkında hemen hemen hiç bir bilgiye sahip değiliz. Müslüman astronomlar 78 yaşına kadar yaşadığını söylerler. Belki Yunan asıllı bir Mısırlı, belki de Mısır asıllı bir Yunanlıdır. Yunanca adı Ptolemaios'tur, ama harf uyuşmazlığı nedeniyle Ortaçağ İslâm Dünyası'nda Batlamyus diye tanınmıştır.

Batlamyus astronomi, matematik, coğrafya ve optik alanlarına katkılar yapmıştır; ancak en çok astronomideki çalışmalarıyla tanınır. Zamanına kadar ulaşan astronomi bilgilerinin sentezini yapmış ve bunları Mathematike Syntaxis (Matematik Sentezi) adlı yapıtında toplamıştır. Bu eserin adı, daha sonra Megale Syntaxis (Büyük Derleme) olarak anılmış ve Arapça'ya çevrilirken başına Arapça'daki harf-i tarif takısı olan el getirildiği için, ismi el-Mecistî biçimine dönüşmüştür; daha sonra Arapça'dan Latince'ye çevrilirken Almagest olarak adlandırıldığından, bugün Batı dünyasında bu eser Almagest adıyla tanınmaktadır.

Almagest, onüç kitaptan oluşur; Birinci Kitap, kanıtlarıyla birlikte Yermerkezli Dizge'nin anaçizgilerini verir; İkinci Kitap, Menelaus'un teoremiyle, küresel trigonometri bilgilerini ve bir kirişler tablosunu içerir; burada örnek problemler de çözülmüştür; Üçüncü Kitap, Güneş'in hareketini ve yıllık süreyi ve Dördüncü Kitap ise, Ay'ın hareketini ve aylık süreyi konu edinir; Beşinci Kitap aynı konularla ilgilidir, Ay'ın ve Güneş'in mesafelerini tartıştığı gibi, bir usturlabın yapılışı ve kullanılışı hakkında da ayrıntılı bilgiler sunar; Altıncı Kitap'ta gezegenlerin kavuşumları ve karşılaşımları incelenir ve Güneş ve Ay tutulmalarına temas edilir; Yedinci ve Sekizinci Kitap, durağan yıldızlarla ilgilidir, meşhur presesyon tartışmasını, Ptolemaios'un durağan yıldızlar katalogunu ve bir gök küresi âleti yapabilmek için gerekli olan yöntem bilgisini içerir; geriye kalan beş kitap ise devingen yıldızların, yani gezegenlerin hareketlerine tahsis edilmiştir ve yapıtın en özgün kısmıdır.

Batlamyus, bu eserinde anaçizgileriyle göksel olguları anlamlandırmak maksadıyla kurmuş olduğu geometrik kuramı tanıtmaktadır; Aristoteles fiziğini temele alan bu kuramda, evren küreseldir ve Yer bu evrenin merkezinde hareketsiz olarak durmaktadır. Şayet günlük veya yıllık görünümler Yer'in hareketleri sonucunda meydana gelseydi, her şey uzaya saçılır ve Yer parçalanırdı. Ay, Merkür, Venüs, Güneş, Mars, Jüpiter, Satürn ve sabit yıldızlar Yer'in çevresinde, muntazam hızlarla, dairesel hareketler yaparlar. Sabit yıldızlar küresi evrenin sonudur.

Ancak, Yer'in merkezde olduğu ve gök cisimlerinin de onun çevresinde muntazam bir şekilde dolandıkları kabul edildiğinde, kuramın bazı gözlemleri, örneğin Ay ve Güneş'in Yer'e yaklaşıp uzaklaşmalarını, bazen hızlı, bazen yavaş hareket etmelerini açıklaması olanaksızdı. Bunun için Batlamyus Yer'i belli bir ölçüde merkezden kaydırmıştır. Klasik astronomide bu düzenek (eksantrik) dış merkezli düzenek olarak adlandırılır. Gezegenlerin gökyüzünde ilmek atmalarını, yani durmalarını ve geriye dönmelerini açıklamak için de, (episikl) taşıyıcı düzenek adı verilen başka bir düzenek daha kabul etmiştir.

Batlamyus, Almagest'in girişinde trigonometriye ilişkin kapsamlı bilgiler vermiştir; çünkü küresel astronominin sınırları içinde kalan klasik astronomiye ait hesaplamalar, küresel geometriye dayanmaktadır. Batlamyus'tan yaklaşık olarak üç asır önce yaşamış olan Hipparkhos (M. Ö. 150) açıların kirişlerle ölçülebileceğini bildirmiş ve bir kirişler cetveli hazırlamıştı; ancak bu konuya ilişkin yapıtı kaybolduğundan, bu cetveli nasıl düzenlediği bilinmemektedir. Bazı yayların kirişlerinin bulunması çok kolaydı ve bu kirişlere ana kirişler adı verilmişti; ama bunların dışındaki yayların kirişlerinin bulunması uzun işlemleri gerektiriyordu. Bu nedenle Batlamyus kirişler cetvelini hazırlarken bir dairenin içine çizilmiş dörtgenlere ilişkin Batlamyus Teoremi'ni (AB . CD + AD . BC = AC . BD) kullanmak suretiyle, açılar toplamı ve farkının kirişlerini (kiriş (A-B), kiriş (A+B), kiriş A/2 , kiriş 2A gibi) bulma yoluna gitmişti.

Batlamyus, coğrafya araştırmalarına da öncülük etmiş ve Coğrafya adlı yapıtıyla matematiksel coğrafya alanını kurmuştur. Bu kitap Kristof Kolomb'a (.... - ....) kadar bütün coğrafyacılar tarafından bir başvuru kitabı olarak kullanılmıştır.

Almagest'ten sonra yazılan Coğrafya, sekiz kitaba bölünmüştür ve matematiksel coğrafya ile haritaların çizilebilmesi için gerekli olan bilgilere tahsis edilmiştir; Almagest gibi Coğrafya da derleme bir eserdir; Batlamyus bu kitabı hazırlarken Eratosthenes, Hiparkhos, Strabon ve özellikle de Surlu Marinos'tan büyük ölçüde yararlanmıştır.

Coğrafya'nın Birinci Kitab'ı Dünya'nın veya doğrusunu söylemek gerekirse Yunanlılar tarafından bilinen Dünya'nın büyüklüğü ve kartografik izdüşüm yöntemleri hakkında ayrıntılı bilgiler verir; İkinci Kitap'la Yedinci Kitap arasında ise tanınmış memleketlerdeki önemli yerlerin, yani önemli kentlerin, dağların ve nehirlerin enlem ve boylamları verilmek suretiyle Dünya'nın düzenli bir tasviri yapılır; enlem ve boylamlardan, yani bir başlangıç dâiresine enlemsel ve boylamsal uzaklıklardan söz eden ilk bilgin Batlamyus'tur; Batlamyus'un enlem ve boylam tablolarıyla betimlemeye çalıştığı Dünya, kabaca 20* Güney'den 65* Kuzey'e ve en Batı'daki Kanarya Adaları'ndan, bunların yaklaşık olarak 180* Doğu'sundaki bölgelere kadar uzanmaktadır; bunun dışında kalan bölgeler ise Yunanlılar ve dolayısıyla Batlamyus tarafından tanınmamaktadır; söz konusu tablolar, haritaların çizilmesini olanaklı kılmaktadır ve nitekim bu haritalar belki de eserin eski nüshalarında mevcuttur; çünkü astronomik bilgileri kapsayan Sekizinci Kitap'ta bunlara belirgin atıflar yapılmıştır.

Ancak Batlamyus'un coğrafya anlayışı yeteri kadar geniş değildir. İklim, doğal ürünler ve fiziki coğrafyaya giren konularla hiç ilgilenmemiştir. Başlangıç meridyenini sağlam bir şekilde belirleyemediği için, vermiş olduğu koordinatlar hatalıdır. Ayrıca, Yer'in büyüklüğü hakkındaki tahmini de doğru değildir. Ancak Kristof Kolomb bu yanlış tahminden cesaret alarak, Batı'ya doğru gitmiş ve Amerika'ya ulaşmıştır.

Aynı zamanda, bu dönemin önde gelen optik araştırmacılarından olan Batlamyus, daha önceki optikçilerin çoğu gibi, görmenin gözden çıkan görsel ışınlar yoluyla oluştuğu görüşünü benimsemiştir. Ancak, görsel yayılımın fiziksel yorumunu da vermiş ve bu yayılımın, kesikli ve aralıklı bir koni biçiminde değil de, kesiksiz ve sürekliliği olan bir piramid biçiminde olduğunu belirtmiştir. Şayet böyle olmasaydı, yani ışınlar gözden sürekli bir biçimde çıkmasaydı, nesneler bir bütün olarak görülemezlerdi. Buna rağmen, Batlamyus'un görsel piramid fikri, optikçiler arasında tutunamamış ve görme söz konusu olduğunda daha çok koni göz önüne alınmıştır. Nitekim kendisinden sonra, İslâm Dünyasında, bilginlerin görsel koni fikrine dayandıkları ve görme geometrisini bunun üzerine kurdukları görülmektedir.

Batlamyus, katoptrik (yansıma) konusuyla da ilgilenmiş ve yapmış olduğu ayrıntılı deneyler sonucunda üç prensip ileri sürmüştür:

1. Aynalarda görünen nesneler, gözün konumuna bağlı olarak, aynadan nesneye yansıyan görsel ışın yönünde görünür.

2. Aynadaki görüntüler nesneden ayna yüzeyine çizilen dikme yönünde ortaya çıkarlar.

3. Geliş ve yansıma açıları eşittir.

(*BOT = *GOT)

Bu prensipler çizim yoluyla yandaki şekilde gösterilmiştir. Buna göre, AY * ayna, G * göz, B * nesne, B' * görüntü, O * ışının aynada yansıdığı nokta, TO * Normal'dir.

Bu üç prensipten ilk ikisini kuramsal, üçüncüsünü ise deneysel olarak kanıtlayan Batlamyus, ayna yüzeyine gelen ışının eşit bir açıyla yansıdığını gösterebilmek için, üzeri derecelenmiş ve tabanına düz bir ayna yerleştirilmiş olan bakır bir levha kullanmıştır. Bu levhaya teğet olacak biçimde bir ışın huzmesini ayna yüzeyine gönderip, gelme ve yansıma açılarının büyüklüklerini belirlemiş ve bunların birbirlerine eşit olduğunu görmüştür. Batlamyus bu deneyini küresel ve parabolik bütün aynalar için tekrarlayarak, ulaştığı sonucun doğru olduğunu kanıtlamıştır.

Batlamyus, dioptrik (kırılma) konusuyla da ilgilenmiş ve ışığın bir ortamdan diğerine geçerken yoğunluk farkından dolayı yön değiştirmesinin nedenini araştırmıştır. Bu araştırmanın sonucunda, az yoğun ortamdan çok yoğun ortama geçen ışının, Normal'a yaklaşarak ve çok yoğun ortamdan az yoğun ortama geçen ışının ise Normal'den uzaklaşarak kırıldığını ve kırılma miktarının yoğunluk farkına bağlı olduğunu ileri sürmüştür.

Nitekim onun bu konuyu ele alırken benimsediği bazı prensiplerden bunu açıkça görmek olanaklıdır:

1. Görsel ışın az yoğundan çok yoğuna veya çok yoğundan az yoğuna geçtiğinde kırılır.

2. Görsel ışın doğrusal olarak yayılır ve farklı yoğunluktaki iki ortamı birbirinden ayıran sınırda yön değiştirir.

3. Gelme ve kırılma açıları eşit değildir; fakat aralarında niceliksel bir ilişki vardır.

4. Görüntü, gözden çıkan ışının devamında ortaya çıkar.

Batlamyus ortam farklılıklarından dolayı ışığın uğradığı değişimleri, aynı zamanda kırılma kanununu da içerecek şekilde deneysel olarak göstermeye çalışmış ve çeşitli ortamlardaki (havadan cama, havadan suya ve sudan cama) kırılma derecelerini gösteren kırılma cetvelleri hazırlamıştır. Ancak verdiği değerler küçük açılar dışında tutarlı olmadığı için kırılma kanununu elde edememiştir.

Batlamyus, daha önce Babil ve Yunan astronomları ve astrologları tarafından derlenmiş bilgi birikimden yararlanmak suretiyle astrolojiyi de sistemleştirmiştir! Dört bölümden oluştuğu için Tetrabiblos (Dört Kitap) olarak adlandırmış olduğu yapıtında, gezegenlerin nitelik ve etkileri, burçların özellikleri, uğurlu ve uğursuz günlerin belirlenmesi gibi astrolojinin sınırları içine giren konular hakkında ayrıntılı bilgiler vermiştir. Ortaçağ ve Yeniçağ astrolojisi bu kitabın sunmuş olduğu birikime dayanacaktır.

Astroloji bir bilim değildir, ama astronomi ile birlikte doğmuş ve yaklaşık olarak 18. yüzyıla kadar, bu bilimin gelişimini, kısmen olumlu kısmen de olumsuz yönde etkilemiştir; bu nedenle astronomi tarihi araştırmalarında astrolojiye ilişkin gelişmelerden de bahsetmek gerekir.



Abderalı Demokritos ( .... - .... ) document.title="Abderalı Demokritos ( .... - .... ) - Kim Kimdir? - FORSNET";

Doğum ve ölüm tarihleri belli olmamakla birlikte, Zenon'dan 30 yıl sonra doğduğu sanılmaktadır. Çok gezmiş, Babil'e ve matematik öğrenmek üzere Mısır'a gitmiş ve orada beş yıl kalmıştır. Hatta bu seyahatları sırasında Hindistan'a kadar uzanmış olduğu sanılmaktadır. Ancak Demokritos bir gezgin değil, bir bilgi arayıcısıdır.

Demokritos'a göre, evren doluluk ve boşluktan oluşmuştur. Dolu kısım, bölünemez küçük parçacıklar, yani atomlar tarafından doldurulmuştur; bunlar ölümsüz ve yalındırlar. Nitelikleri aynı ama biçimleri ayrıdır. Varlıklar bu atomların bir araya gelmelerinden oluşmuşlardır ve bir arada bulundukları sürece vardırlar; şayet bunları oluşturan atomlar bir nedenle dağılırsa yok olur giderler. Evrende gözlemlenen değişim, atomların birleşmesi ve dağılmasından ibarettir. Atomcu kuram, özünde mekanist ve deterministtir, ama bu dönemde atomların nasıl hareket ettiklerine ilişkin güçlü bir yaklaşımın eksikliği duyulmaktadır.

Demokritos, ruhu maddeden ayırmaz; ruhu oluşturan atomlar daha ince, daha hafif ve daha hareketlidir; hepsi o kadar. Bu tür ince atomların birleşimine ruh dediği gibi akıl da der. Bunlar, evrenin her yerine dağılmıştır; öyleyse evren canlı ve akıllıdır. Ancak Tanrı yoktur; Anaksagoras'ın belirttiği anlamda bir nous da bulunmaz.

Hindistan'da da atomcu görüşlerle karşılaşılmaktadır; ancak tarihini saptamak olanaksızdır. Eğer daha önce ise, Yunanlıların bundan haberdar olup olmadıkları düşünülebilir. Haberdar olmaları olanaksız değildir; çünkü Demokritos İran'da bulunduğu sıralarda doğrudan veya dolaylı olarak bu görüşleri öğrenmiş olabilir. Gerek Yunan'da ve gerekse Hint'te birbirlerinden bağımsız olarak düşünülmüş olması da mümkündür; ancak atomcu görüşün Doğu kökenli olduğuna ilişkin başka bulgular da vardır. Mesela Poseidonius (M.Ö. 1. yüzyıl) bu kuramı, bir Fenikeli olan Sidonlu Mochos'a, yine Byblioslu Filon ise Beyrutlu Sanchuniaton'a atfetmektedir. Filon, bu adamın kitaplarını Yunanca'ya çevirmiştir.

Demokritos matematikle de ilgilenmiş ve Bir Daire veya Bir Küreye Çizilen Teğet, Geometri Üzerine, Sayılar Üzerine (aynı adı taşıyan bir yapıtı daha vardır) ve İrrasyoneller Üzerine adını taşıyan yapıtlar vermiştir.

Bir Daire veya Bir Küreye Çizilen Teğet'te, kürenin veya dairenin teğetle ortak olan bir tek noktası bulunduğunu ve teğet biraz oynatılacak olursa, bu defa daireyi ve küreyi iki noktada keseceğini ve teğet olma özelliğini kaybedeceğini söyler.

Geometri Üzerine adlı yapıtın içeriğine ilişkin fazla bir bilgiye sahip değiliz. Ancak Chrysippus'a dayanarak Plutarkos'un yapmış olduğu şu aktarma gerçekten çok ilginçtir :

"Demokritos, bir koninin, tabanına paralel olan dairelerle kesilecek olursa, kesitlerin yüzeyine ilişkin neler söylenebileceğini sormuştur. Bunlar eşit midir? Yoksa değil midir? Eğer eşit değillerse, o zaman koninin yüzeyi merdivene benzeyecek, yani düzgün olmayacaktır. Eğer eşitlerse, o zaman da koni bir silindir özelliğine sahip olacaktır. Bu son derece gariptir."

Bu yorum son derece ilginçtir; çünkü Demokritos, bu yorumunda, bir cismin sonsuz sayıda kesitten oluştuğunu göstererek Archimedes'e yaklaşmıştır. Demokritos şunu sezmiştir : Eğer iki piramit, eşit tabana ve eşit yüksekliğe sahipseler, tabana paralel olan düzlemler tarafından eşit yüksekliklerden kesildiklerinde oluşan piramit kesitleri birbirlerine eşit olacaktır. Sonsuz sayıdaki kesitleri eşit olduğu için, iki piramidin hacimleri de eşittir. Bu bir bakıma, Cavalier'in ortaya koyduğu, "İki hacimin, aynı yükseklikten alınan kesitleri, her konumda eşit iseler, bu iki hacim eşittir." ilkesine benzemektedir.

Demokritos'un incelemiş olduğu konular, Eukleides'in Elementler'de incelemiş olduğu bazı konularla paralellik göstermektedir.

İrrasyonel Doğrular ve Hacimler adlı yapıtı, konilere ilişkin yapmış olduğu çalışmaların sonucunda yazılmıştır. Burada irrasyonelleri incelemiş olması çok doğaldır. İçeriğinin ne olduğu bilinmese de, irrasyonel doğruların bölünemez olduğunu düşünmüş olabilir. Konilerde karşılaşmış olduğu sürpriz karşısında, nasıl bir tavır takınmış olduğu bilinmiyor. Acaba benimsemiş olduğu atom kuramıyla, bu sonucu nasıl uzlaştırmıştır? Çünkü atomun parçalanamaz olduğunu kabul ederse, koni kesitlerinin merdiven biçiminde olduğunu da kabul etmek zorunda kalacağı açıktır.

Platon, Demokritos'tan hiç söz etmez, ama Aristoteles övgüler düzer. Archimedes ise, aynı taban ve aynı yüksekliğe sahip bir koni ile bir silindirin hacimleri arasında 1/3 oranının bulunduğunu keşfetmiş olmasına büyük bir değer verir; ancak bunun kanıtını vermemiş olduğunu da ekler.

Demokritos'un Gezegenler Üzerine ve Büyük Yıl veya Astronomi adlı yapıtları ise astronomiyle ilgilidir. Yer'in, ortası delik, düz bir disk biçiminde olduğuna inanır. Gök küresini, kuzey ve güney gökküreleri olmak üzere iki yarım küreye böler ve güneydeki yıldız kümelerinin kuzeydekilerden farklı olduklarını söyler. Bu görüşleri, Yer'in düz olmasıyla nasıl uzlaştırabilmiştir? Bunu açıklamak güçtür; ancak bu yaklaşımı, kendisinin büyük ölçüde Babillilerin etkisi altında kaldığını göstermektedir.

Aynı zamanda iyi bir kozmologdur (yani evrenbilimcidir). Ona göre, evrende çok sayıda ve çeşitli büyüklüklerde dünyalar vardır. Bunlar birbirlerinden farklı uzaklıklarda bulunurlar. Bazıları oluşmaktadır; bazıları oluşmuştur ve bazıları ise çökmektedir. Bunlardan bazıları çarpışarak yok olurlar. Bazılarında su, bitki ve hayvan yoktur. Bizim bölgemizde ilk önce Yer oluşmuştur. Ay, yıldızların en altında bulunur; onu Güneş ve gözle görülebilen beş gezegen izler.


Ahmed ibn el-Mecdî (1358 - 1447) document.title="Ahmed ibn el-Mecdî (1358 - 1447) - Kim Kimdir? - FORSNET";

Muhtemelen Kâhire'de yaşayan ve İbnü'l-Mecdî adıyla meşhur olan bu bilginin tam adı, Şihâbüddin Ebû'l-Abbâs Ahmed ibn Receb ibn Tanboğa el-Atabeğî (1358-1447) idi. Özellikle mîkât ile ferâiz alanlarında eserler vermiş ve astronomların kullandıkları altmışlık hesaplama yöntemini tanıtan Keşfü'l-Hakâ'ik fî Hisâbi'd-Derec ve'd-Dakâ'ik (Derecelerin ve Dakikaların Hesaplanmasında Gerçeklerin Keşfi) adlı kitabı sonradan öğrencisi Bedreddin Sıbt el-Mârdînî tarafından şerh edilmiştir.

 

http://www.kimkimdir.gen.tr/

Yorum Yaz